library(tidyverse)
library(knitr)
library(readxl)
library(zoo)
# read in covid data from URL
covid19 = read_csv('https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv')
Filter data to California and add new column of daily new cases
covid_ca = covid19 %>%
filter(state=="California") %>%
group_by(county) %>%
mutate(newcases = cases - lag(cases)) %>%
ungroup()
Table of 5 counties with most cases
top5cumulative= covid_ca %>%
filter(date==max(date)) %>%
slice_max(cases, n=5) %>%
select(county, cases)
knitr::kable(top5cumulative,
caption = "Most Cumulative Cases California Counties",
col.names = c("County", "Cumulative Cases"))
County | Cumulative Cases |
---|---|
Los Angeles | 253176 |
Riverside | 55073 |
Orange | 51936 |
San Bernardino | 50543 |
San Diego | 42477 |
Table of 5 counties with most new cases
top5_newcases = covid_ca %>%
filter(date==max(date)) %>%
slice_max(newcases, n=5) %>%
select(county, newcases)
knitr::kable(top5_newcases,
caption = "Most New Cases California Counties",
col.names = c("County", "New Cases"))
County | New Cases |
---|---|
Los Angeles | 1110 |
San Diego | 445 |
Santa Clara | 274 |
Orange | 178 |
San Joaquin | 165 |
Read in population data and join with covid data.
pop_est = read_excel("C:/Users/hopew/Desktop/github176/geog-176A-labs/data/PopulationEstimates.xls",
skip=2)
pop_est = pop_est %>%
select(fips="FIPStxt", state="State", "Area_Name", pop2019="POP_ESTIMATE_2019")
pop_joined_covid = inner_join(pop_est, covid_ca, by="fips")
cases_percapita = pop_joined_covid %>%
filter(date==max(date)-13) %>%
mutate(most_percapita = (sum(cases))/pop2019) %>%
mutate(new_percapita = ((sum(cases-lag(cases)))/pop2019))
Table of most cases per capita
most_cumulative_percapita = cases_percapita %>%
slice_max(most_percapita, n=5) %>%
select(county, most_percapita)
knitr::kable(most_cumulative_percapita,
caption = "Most Cumulative Cases Per Capita California Counties",
col.names = c("County", "Cumulative Cases per Capita"))
County | Cumulative Cases per Capita |
---|---|
Alpine | 625.85385 |
Sierra | 235.13777 |
Modoc | 79.92184 |
Trinity | 57.51640 |
Mono | 48.91921 |
Table of most new cases per hundred thousand people
last14days = pop_joined_covid %>%
filter(date>max(date)-14) %>%
group_by(county, pop2019) %>%
summarise(newcases=sum(newcases)) %>%
ungroup() %>%
mutate(case_per100k = newcases/(pop2019/100000)) %>%
filter(case_per100k<=100)
knitr::kable(last14days,
caption="Counties with Most New Cases")
county | pop2019 | newcases | case_per100k |
---|---|---|---|
Alpine | 1129 | 0 | 0.00000 |
Del Norte | 27812 | 7 | 25.16899 |
El Dorado | 192843 | 81 | 42.00308 |
Humboldt | 135558 | 79 | 58.27764 |
Inyo | 18039 | 16 | 88.69671 |
Lake | 64386 | 62 | 96.29423 |
Lassen | 30573 | 12 | 39.25032 |
Mariposa | 17203 | 2 | 11.62588 |
Mono | 14444 | 1 | 6.92329 |
Nevada | 99755 | 45 | 45.11052 |
Placer | 398329 | 354 | 88.87126 |
Plumas | 18807 | 3 | 15.95151 |
Shasta | 180080 | 50 | 27.76544 |
Sierra | 3005 | 0 | 0.00000 |
Siskiyou | 43539 | 27 | 62.01337 |
Solano | 447643 | 432 | 96.50547 |
Tehama | 65084 | 56 | 86.04265 |
Trinity | 12285 | 5 | 40.70004 |
Tuolumne | 54478 | 32 | 58.73931 |